L 2 (R) Solutions of Dilation Equations and Fourier-Like Transforms

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive-definiteness, Integral Equations and Fourier Transforms

We show that positive definite kernel functions k(x, y), if continuous and integrable along the main diagonal, coincide with kernels of positive integral operators in L2(R). Such an operator is shown to be compact; under the further assumption k(x, x) → 0 as |x| → ∞ it is also trace class and the corresponding bilinear series converges absolutely and uniformly. If k1/2(x, x) ∈ L1(R), all these ...

متن کامل

Poincare wave equations as Fourier transforms of Galilei wave equations

It is well known that the Galilei algebra is a sub algebra of Poincare algebra in one space dimension more. 1 This fact allows us to relate relativistic Poincare and Galilean theories. An interesting point is that Galilei transformations in two space dimensions are contained in the usual Poincare transformations? This enables us to present Poincare spin zero wavefunctions as Fourier transforms ...

متن کامل

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

Domains of holomorphy for Fourier transforms of solutions to discrete convolution equations

We study solutions to convolution equations for functions with discrete support in R, a special case being functions with support in the integer points. The Fourier transform of a solution can be extended to a holomorphic function in some domains in C, and we determine possible domains in terms of the properties of the convolution operator.

متن کامل

Infinite Energy Solutions for Dissipative Euler Equations in R 2

We study the system of Euler equations with the so-called Ekman damping in the whole 2D space. The global well-posedness and dissipativity for the weak infinite energy solutions of this problem in the uniformly local spaces is verified based on the further development of the weighted energy theory for the Navier–Stokes and Euler type problems. In addition, the existence of weak locally compact ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fourier Analysis and Applications

سال: 2002

ISSN: 1069-5869,1531-5851

DOI: 10.1007/s00041-002-0015-4